Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 105]
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите все такие тройки действительных чисел x, y, z, что 1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)², 1 + z4 ≤ 2(x – y)².
Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в
три различных цвета, таких, что произведение двух из них равно третьему?
Положительные действительные числа a1, ..., an и k таковы, что a1 + ... + an = 3k,
и .
Докажите, что какие-то два из чисел a1, ..., an отличаются больше чем на 1.
Изначально на доске записаны 10 последовательных натуральных чисел.
За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа a² – 2011b² и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?
|
|
Сложность: 4+ Классы: 10,11
|
Вася нарисовал на плоскости несколько окружностей и провёл всевозможные
общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 105]