ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]      



Задача 111873

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Системы алгебраических неравенств ]
Сложность: 4
Классы: 8,9,10

Найдите все такие тройки действительных чисел x, y, z, что  1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)²,  1 + z4 ≤ 2(x – y)².

Прислать комментарий     Решение

Задача 115417

Темы:   [ Простые числа и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Необычные конструкции ]
Сложность: 4
Классы: 8,9

Можно ли раскрасить натуральные числа в 2009 цветов так, чтобы каждый цвет встречался бесконечное число раз, и не нашлось тройки чисел, покрашенных в три различных цвета, таких, что произведение двух из них равно третьему?

Прислать комментарий     Решение

Задача 116758

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Положительные действительные числа    a1, ..., an  и k таковы, что  a1 + ... + an = 3k,     и    .
Докажите, что какие-то два из чисел  a1, ..., an  отличаются больше чем на 1.

Прислать комментарий     Решение

Задача 116761

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10

Изначально на доске записаны 10 последовательных натуральных чисел. За одну операцию разрешается выбрать любые два числа на доске (обозначим их a и b) и заменить их на числа  a² – 2011b²  и ab. После нескольких таких операций на доске не осталось ни одного из исходных чисел. Могли ли там опять оказаться 10 последовательных натуральных чисел (записанных в некотором порядке)?

Прислать комментарий     Решение

Задача 116569

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Правильные многоугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Вася нарисовал на плоскости несколько окружностей и провёл всевозможные общие касательные к каждой паре этих окружностей. Оказалось, что проведённые прямые содержат все стороны некоторого правильного 2011-угольника. Какое наименьшее количество окружностей мог нарисовать Вася?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .