Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 105]
|
|
Сложность: 4 Классы: 9,10,11
|
Числовое множество
M , содержащее 2003 различных положительных числа, таково,
что для любых трех различных элементов
a,b,c из
M
число
a2
+bc рационально.
Докажите, что можно выбрать такое натуральное
n , что для любого
a
из
M число
a рационально.
|
|
Сложность: 4 Классы: 9,10,11
|
Докажите, что можно выбрать такие различные действительные числа a1, a2, ..., a10, что уравнение
(x – a1)(x – a2)...(x – a10) = (x + a1)(x + a2)...(x + a10) будет иметь ровно пять различных действительных корней.
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
|
|
Сложность: 4 Классы: 10,11
|
Высота четырехугольной пирамиды
SABCD проходит через точку пересечения диагоналей
ее основания
ABCD . Из вершин основания опущены перпендикуляры
AA1
,
BB1
,
CC1
,
DD1
на прямые
SC ,
SD ,
SA и
SB соответственно.
Оказалось, что точки
S ,
A1
,
B1
,
C1
,
D1
различны и лежат на
одной сфере. Докажите, что прямые
AA1
,
BB1
,
CC1
,
DD1
проходят
через одну точку.
|
|
Сложность: 4 Классы: 7,8,9
|
Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум
его соседним цифрам по единице, если ни одна из этих цифр не равна 9, либо вычтя из
соседних двух цифр по единице, если ни одна из них не равна 0.
Можно ли с помощью таких операций из числа 1234 получить число 2002?
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 105]