ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM. В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$. Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну? Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине? Дан фиксированный треугольник ABC. Пусть D – произвольная точка в плоскости треугольника, не совпадающая с его вершинами. Окружность с центром в D, проходящая через A, пересекает вторично прямые AB и AC в точках Ab и Ac соответственно. Аналогично определяются точки Ba, Bc, Ca и Cb. Точку D назовём хорошей, если точки Ab, Ac, Ba, Bc, Ca и Cb лежат на одной окружности. Ортогональной проекцией тетраэдра на плоскость одной из его граней является трапеция площади 1. Может ли ортогональной проекцией этого тетраэдра на плоскость другой его грани быть квадрат площади 1? |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 145]
Можно ли прямоугольник $5 \times 7$ покрыть уголками из трёх клеток (т.е. фигурками, которые получаются из квадрата $2 \times 2$ удалением одной клетки), не выходящими за его пределы, в несколько слоёв так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?
Арбуз имеет форму шара диаметра 20 см. Вася сделал длинным ножом три взаимно перпендикулярных плоских надреза глубиной h (надрез – это сегмент круга, h – высота сегмента, плоскости надрезов попарно перпендикулярны). Обязательно ли при этом арбуз разделится хотя бы на два куска, если
В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$ – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.
а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат. б) Докажите, что если в результате такой же процедуры из некоторого n-угольника получается правильный n-угольник, то исходный многоугольник – правильный.
В остроугольном треугольнике $ABC$ проведены высоты $AA_1$ и $CC_1$. Окружность, описанная вокруг треугольника $A_1BC_1$, проходит через точку $M$ пересечения медиан. Найдите все возможные значения величины угла $B$.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 145]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке