ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сумма кубов трёх последовательных натуральных чисел оказалась кубом натурального числа. Докажите, что среднее из этих трёх чисел делится на 4. В выражении (x4 + x³ – 3x² + x + 2)2006 раскрыли скобки и привели подобные слагаемые.
Существуют ли действительные числа a , b и c такие, что при
всех действительных x и y выполняется неравенство
На вертикальную ось надели несколько колес со спицами. Вид сверху
изображен на левом рисунке.
После этого колеса повернули. Новый вид сверху изображен на рисунке справа. Могло ли колес быть: а) три; б) два? Плоская выпуклая фигура ограничена отрезками AB и AD и дугой BD некоторой окружности (рис.1). Постройте какую-нибудь прямую, которая делит пополам: а) периметр этой фигуры; б) её площадь. Квадрат разрезали на несколько частей. Переложив эти части, из них всех сложили треугольник. Затем к этим частям добавили еще одну фигурку – и оказалось, что и из нового набора фигурок можно сложить как квадрат, так и треугольник. Покажите, как такое могло бы произойти (нарисуйте, как именно эти два квадрата и два треугольника могли бы быть составлены из фигурок). Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 . Четырёхугольник ABCD описан около окружности ω. Продолжения сторон AB и CD пересекаются в точке O. Окружность ω1 касается стороны BC в точке K и продолжений сторон AB и CD; окружность ω2 касается стороны AD в точке L и продолжений сторон AB и CD. Известно, что точки O, K и L лежат на одной прямой. Докажите, что середины сторон BC, AD и центр окружности ω лежат на одной прямой. Окружность, вписанная в угол с вершиной O касается его сторон в точках A и B , K – произвольная точка на меньшей из двух дуг AB этой окружности. На прямой OB взята точка L такая, что прямые OA и KL параллельны. Пусть M – точка пересечения окружности , описанной около треугольника KLB , с прямой AK , отличная от K . Докажите, что прямая OM касается окружности . Окружности σ 1 и σ 2 пересекаются в точках A и B . В точке A к σ 1 и σ 2 проведены соответственно касательные l1 и l2 . Точки T1 и T2 выбраны соответственно на окружностях σ 1 и σ 2 так, что угловые меры дуг T1A и AT2 равны (величина дуги окружности считается по часовой стрелке). Касательная t1 в точке T1 к окружности σ 1 пересекает l2 в точке M1 . Аналогично, касательная t2 в точке T2 к окружности σ 2 пересекает l1 в точке M2 . Докажите, что середины отрезков M1M2 находятся на одной прямой, не зависящей от положения точек T1 , T2 . Точка E – середина отрезка, соединяющего ортоцентр неравнобедренного остроугольного треугольника ABC с его вершиной A. Вписанная окружность этого треугольника касается сторон AB и AC в точках C' и B' соответственно. Докажите, что точка F, симметричная точке E относительно прямой B'C', лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC. В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный. Натуральное число b назовём удачным, если для любого натурального a, такого, что a5 делится на b², число a² делится на b.
Каждую вершину выпуклого четырехугольника площади S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через S' . Докажите, что
Точка P расположена внутри квадрата ABCD, причём AP : BP : CP = 1 : 2 : 3. Найдите угол APB.
Дана невозрастающая последовательность неотрицательных чисел
a1 ≥ a2 ≥ a3 ≥ ... ≥ a2k+1 ≥ 0.
Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$. Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя. На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор: |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
Приведите пример таких целых чисел $a$, $b$, $c$, $d$, среди которых нет одинаковых, что $a^b=c^d$ и $b^a=d^c$.
Вот ребус довольно простой:
Волшебным считается момент, в который число минут на электронных часах совпадает с числом часов. Чтобы сварить волшебное зелье, его надо и поставить на огонь, и снять с огня в волшебные моменты. А чтобы оно получилось вкусным, его надо варить от 1,5 до 2 часов. Сколько времени варится вкусное волшебное зелье?
Дан куб с ребром 2. Покажите, как наклеить на него без наложений 10 квадратов со стороной 1 так, чтобы никакие квадраты не граничили по отрезку (по стороне или её части). Перегибать квадраты нельзя.
На острове Правландия все жители могут ошибаться, но младшие никогда не противоречат старшим, а когда старшие противоречат младшим, они (старшие) не ошибаются. Между жителями A, Б и В произошёл такой разговор:
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке