Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Малкин М.И.

Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

В равенстве 101 – 102 = 1 передвиньте одну цифру так, чтобы оно стало верным.

Вниз   Решение


Зашифрование сообщения состоит в замене букв исходного текста на пары цифр в соответствии с некоторой (известной только отправителю и получателю) таблицей, в которой разным буквам алфавита соответствуют разные пары цифр. Криптографу дали задание восстановить зашифрованный текст. В каком случае ему будет легче выполнить задание: если известно, что первое слово второй строки – "термометр" или что первое слово третьей строки – "ремонт"?

ВверхВниз   Решение


Десять человек захотели основать клуб. Для этого им необходимо собрать определённую сумму вступительных взносов. Если бы организаторов было на пять человек больше, то каждый из них должен был бы внести на 100 долларов меньше. Сколько денег внёс каждый?

ВверхВниз   Решение


Делимое в шесть раз больше делителя, а делитель в шесть раз больше частного. Чему равны делимое, делитель и частное?

ВверхВниз   Решение


В первом пенале лежат лиловая ручка, зелёный карандаш и красный ластик; во втором – синяя ручка, зелёный карандаш и жёлтый ластик; в третьем – лиловая ручка, оранжевый карандаш и жёлтый ластик. Содержимое этих пеналов характеризуется такой закономерностью: в каждых двух из них ровно одна пара предметов совпадает и по цвету, и по назначению. Что должно лежать в четвёртом пенале, чтобы эта закономерность сохранилась? (В каждом пенале лежит ровно три предмета: ручка, карандвш и ластик.)

ВверхВниз   Решение


Первый вторник месяца Митя провёл в Смоленске, а первый вторник после первого понедельника  — в Вологде. В следующем месяце Митя первый вторник провёл во Пскове, а первый вторник после первого понедельника  — во Владимире. Сможете ли вы определить, какого числа и какого месяца Митя был в каждом из городов?

ВверхВниз   Решение


Впишите в следующее предложение какое-нибудь числительное (не цифрами, а словом или словами), чтобы предложение было верным.

В этом предложении ______________________ гласных букв.

ВверхВниз   Решение


Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?

ВверхВниз   Решение


Угол при вершине журавлиного клина равен 20°.
Как изменится величина этого угла при рассматривании журавлей в бинокль с троекратным увеличением?

ВверхВниз   Решение


Куб со стороной 1 м распилили на кубики со стороной 1 см и положили их в ряд (по прямой). Какой длины оказался ряд?

ВверхВниз   Решение


Среди 40 кувшинов, с которыми атаман разбойников приехал в гости к Али-Бабе, нашлись два кувшина разной формы и два кувшина разного цвета. Докажите, что среди них найдутся два кувшина одновременно и разной формы и разного цвета.

ВверхВниз   Решение


Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.

ВверхВниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

ВверхВниз   Решение


На острове живут два племени  — аборигены и пришельцы. Известно, что аборигены всегда говорят правду, пришельцы  — всегда лгут. Путешественник нанял туземца-островитянина в проводники. По дороге они встретили какого-то человека. Путешественник попросил проводника узнать, к какому племени принадлежит этот человек. Проводник вернулся и сообщил, что человек назвался аборигеном. Кем был проводник  — аборигеном или пришельцем?

ВверхВниз   Решение


Напишите вместо пропуска число (буквами, а не цифрами!), чтобы получилось истинное предложение:

В ЭТОМ ПРЕДЛОЖЕНИИ ... БУКВ

(к последнему слову, возможно, придётся добавить окончание, чтобы фраза правильно звучала по-русски).

ВверхВниз   Решение


В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Вверх   Решение

Все задачи автора

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 66564

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 9,10,11

Существует ли вписанный в окружность $19$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?
Прислать комментарий     Решение


Задача 116281

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 10,11

В пространстве с декартовой системой координат дан прямоугольный параллелепипед, вершины которого имеют целочисленные координаты. Его объём равен 2011. Докажите, что рёбра параллелепипеда параллельны координатным осям.

Прислать комментарий     Решение

Задача 64848

Темы:   [ Произведения и факториалы ]
[ Разбиения на пары и группы; биекции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?

Прислать комментарий     Решение

Задача 65854

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любая натуральная степень многочлена  P(x) = x4 + x³ – 3x² + x + 2  имеет хотя бы один отрицательный коэффициент.

Прислать комментарий     Решение

Задача 66853

Темы:   [ Вписанные и описанные многоугольники ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10,11

Существует ли вписанный в окружность $N$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов, если
  а)  $N$ = 19;
  б)  $N$ = 20?

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .