ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81]
Даны различные натуральные числа a1, a2, ..., a14. На доску выписаны все 196 чисел вида ak + al, где 1 ≤ k, l ≤ 14. Может ли оказаться, что для каждой комбинации из двух цифр среди написанных на доске чисел найдётся хотя бы одно число, оканчивающееся на эту комбинацию (то есть найдутся числа, оканчивающиеся на 00, 01, 02, ..., 99)?
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
Через вершины треугольника ABC проведены параллельные прямые la, lb, lc. Пусть прямая a симметрична высоте AHa относительно la. Аналогично определяем b, c. Докажите, что a, b, c пересекаются в одной точке.
Пусть O – центр описанной окружности треугольника ABC. На стороне BC нашлись точки X и Y такие, что AX=BX и AY=CY. Докажите, что окружность, описанная около треугольника AXY, проходит через центры описанных окружностей треугольников AOB и AOC.
Дан вписанный четырехугольник ABCD. Пусть E=AC∩BD, F=AD∩BC. Биссектрисы углов AFB и AEB пересекают CD в точках X,Y. Докажите, что точки A,B,X,Y лежат на одной окружности.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке