Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кожевников П.А.

Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Четыре круга, центры которых являются вершинами выпуклого четырёхугольника, целиком покрывают этот четырёхугольник. Докажите, что из них можно выбрать три круга, которые покрывают треугольник с вершинами в центрах этих кругов.

Вниз   Решение


На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

ВверхВниз   Решение


Докажите, что площадь выпуклого четырёхугольника равна половине произведения его диагоналей на синус угла между ними.

ВверхВниз   Решение


а) Докажите для всех n > 2 неравенство    

б) Найдите какие-нибудь такие натуральные числа a, b, c, что для всех  n > 2  

ВверхВниз   Решение


Художник-авангардист нарисовал картину "Контур квадрата и его диагонали".
Мог ли он нарисовать свою картину, не отрывая карандаша от бумаги и не проводя одну линию дважды?

ВверхВниз   Решение


Автор: Анджанс А.

Числовая последовательность определяется условиями:  
Сколько полных квадратов встречается среди первых членов этой последовательности, не превосходящих 1000000?

ВверхВниз   Решение


Для каждого непрямоугольного треугольника T обозначим через T1 треугольник, вершинами которого служат основания высот треугольника T; через T2 – треугольник, вершинами которого служат основания высот треугольника T1; аналогично определим треугольники T3, T4 и так далее. Каким должен быть треугольник T, чтобы
  а) треугольник T1 был остроугольным?
  б) в последовательности T1, T2, T3, ... встретился прямоугольный треугольник Tn (и таким образом треугольник Tn+1 не определён)?
  в) треугольник T3 был подобен треугольнику T?
  г) Для каждого натурального числа n выясните, сколько существует неподобных друг другу треугольников T, для которых треугольник Tn подобен треугольнику Т.

ВверхВниз   Решение


а) Есть неограниченный набор карточек со словами "abc", "bca", "cab". Из них составляют слово по такому правилу. В качестве начального слова выбирается любая карточка, а далее на каждом шаге к имеющемуся слову можно либо приклеить карточку слева или справа, либо разрезать слово в любом месте (между буквами) и вклеить карточку туда. Можно ли так составить палиндром?

б) Есть неограниченный набор красных карточек со словами "abc", "bca", "cab" и синих карточек со словами "cba", "acb", "bac". Из них по тем же правилам составили палиндром. Верно ли, что было использовано одинаковое количество красных и синих карточек?

ВверхВниз   Решение


Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

ВверхВниз   Решение


Глеб задумал натуральные числа $N$ и $a$, где  $a < N$ . Число $a$ он написал на доске. Затем Глеб стал проделывать такую операцию: делить $N$ с остатком на последнее выписанное на доску число и полученный остаток от деления также записывать на доску. Когда на доске появилось число 0, он остановился. Мог ли Глеб изначально выбрать такие $N$ и $a$, чтобы сумма выписанных на доске чисел была больше 100$N$?

ВверхВниз   Решение


Выпуклый пятиугольник ABCDE таков, что  AB || CD,  BC || AD,  AC || DECEBC.  Докажите, что EC – биссектриса угла BED.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

ВверхВниз   Решение


а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81]      



Задача 35585

Темы:   [ Связность и разложение на связные компоненты ]
[ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Какое наименьшее число соединений требуется для организации проводной сети связи из 10 узлов, чтобы при выходе из строя любых двух узлов связи сохранялась возможность передачи информации между любыми двумя оставшимися (хотя бы по цепочке через другие узлы)?

Прислать комментарий     Решение

Задача 64466

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

Прислать комментарий     Решение

Задача 64743

Темы:   [ Взаимное расположение двух окружностей ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3+
Классы: 10,11

Каждая из двух равных окружностей ω1 и ω2 проходит через центр другой. Треугольник ABC вписан в ω1, а прямые AC, BC касаются ω2.
Докажите, что  cos∠A + cos∠B = 1.

Прислать комментарий     Решение

Задача 65071

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Даны натуральные числа a и b, причём  a < 1000.  Докажите, что если a21 делится на b10, то a² делится на b.

Прислать комментарий     Решение

Задача 65097

Темы:   [ Пятиугольники ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Выпуклый пятиугольник ABCDE таков, что  AB || CD,  BC || AD,  AC || DECEBC.  Докажите, что EC – биссектриса угла BED.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 81]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .