ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двузначное число в сумме с числом, записанным теми же цифрами, но в обратном порядке, даёт полный квадрат. Найти все такие числа. При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет
среди присутствующих не более n – 1 врага. Можно ли записать в строку 20 чисел так, чтобы сумма любых трёх последовательных чисел была положительна, а сумма всех 20 чисел была отрицательна? На кафтане площадью 1 размещены Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности. Четырехугольник $ABCD$ описан около окружности с центром $I$. Точки $O_1$ и $O_2$ – центры описанных окружностей треугольников $AID$ и $CID$. Докажите, что центр описанной окружности треугольника $O_1IO_2$ лежит на биссектрисе угла $B$ четырехугольника. Мальвина всю неделю учила Буратино писать. Она изобразила на диаграмме, сколько букв написал Буратино за каждый из семи дней. Черта на диаграмме показывает среднее число букв (оно равно 9). Буратино оторвал кусок диаграммы, как показано на рисунке. Сколько букв он написал в воскресенье? |
Страница: 1 2 >> [Всего задач: 6]
Мальвина всю неделю учила Буратино писать. Она изобразила на диаграмме, сколько букв написал Буратино за каждый из семи дней. Черта на диаграмме показывает среднее число букв (оно равно 9). Буратино оторвал кусок диаграммы, как показано на рисунке. Сколько букв он написал в воскресенье?
Сумма нескольких положительных чисел равна единице. Докажите, что среди них найдётся число, не меньшее суммы квадратов всех чисел.
Несократимая дробь $\frac{a}{b}$ такова, что $$ \frac{a}{b}=\frac{999}{1999}+\frac{999}{1999}\cdot \frac{998}{1998}+\frac{999}{1999}\cdot\frac{998}{1998}\cdot \frac{997}{1997}+\ldots + \frac{999}{1999}\cdot \frac{998}{1998}\cdot \ldots \cdot \frac{1}{1001}. $$ Найдите $a$ и $b$.
В аквариуме живет три вида рыбок: золотые, серебряные и красные. Если кот съест всех золотых рыбок, то рыбок станет на 1 меньше, чем ⅔ исходного числа. Если кот съест всех красных рыбок, то рыбок станет на 4 больше, чем ⅔ исходного числа. Каких рыбок – золотых или серебряных – больше и на сколько?
У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке