ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 155]      



Задача 66747

Темы:   [ Биссектриса делит дугу пополам ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9,10,11

К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

Прислать комментарий     Решение

Задача 66750

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,10,11

Внутри равнобедренного треугольника $ABC$ отмечена точка $K$ так, что  $CK = AB = BC$  и  ∠ KAC = 30°.  Найдите угол $AKB$.

Прислать комментарий     Решение

Задача 66754

Темы:   [ Биссектриса угла ]
[ Теорема синусов ]
Сложность: 4-
Классы: 8,9,11

К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

Прислать комментарий     Решение

Задача 66826

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10,11

В каждой клетке полоски длины 100 стоит по фишке. Можно за 1 рубль поменять местами любые две соседние фишки, а также можно бесплатно поменять местами любые две фишки, между которыми стоят ровно 4 фишки. За какое наименьшее количество рублей можно переставить фишки в обратном порядке?

Прислать комментарий     Решение

Задача 116829

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

В некоторых клетках квадрата 11×11 стоят плюсы, причём всего плюсов чётное количество. В каждом квадратике 2×2 тоже чётное число плюсов.
Докажите, что чётно и число плюсов в 11 клетках главной диагонали квадрата.

Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 155]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .