Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 155]
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Трое играют в "камень-ножницы-бумагу". В каждом раунде каждый наугад показывает "камень", "ножницы" или "бумагу". "Камень" побеждает "ножницы", "ножницы" побеждают "бумагу", "бумага" побеждает "камень". Если в раунде было показано ровно два различных элемента (и значит, один из них показали дважды), то игроки (или игрок), показавшие победивший элемент, получают по 1 баллу; иначе баллы никому не начисляются. После нескольких раундов оказалось, что все элементы были показаны одинаковое количество раз. Докажите, что в этот момент сумма набранных всеми баллов делилась на 3.
На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что AK = BL = a,
KM = LM = b и угол KML прямой. Докажите, что a = b.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.
|
|
|
Сложность: 4- Классы: 8,9,10
|
Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.
|
|
|
Сложность: 4- Классы: 9,10,11
|
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 155]