ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]      



Задача 64844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны N прямоугольных треугольников  (N > 1).  У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.

Прислать комментарий     Решение

Задача 64845

Темы:   [ Процессы и операции ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 9,10,11

На столе лежала кучка серебряных монет. Каждым действием либо добавляли одну золотую монету и записывали количество серебряных монет на первый листок, либо убирали одну серебряную монету и записывали количество золотых монет на второй листок. В итоге на столе остались только золотые монеты. Докажите, что в этот момент сумма всех чисел на первом листке равнялась сумме всех чисел на втором.

Прислать комментарий     Решение

Задача 64849

Темы:   [ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Прислать комментарий     Решение

Задача 64850

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.

Прислать комментарий     Решение

Задача 65110

Темы:   [ Числовые таблицы и их свойства ]
[ Системы линейных уравнений ]
Сложность: 4-
Классы: 7,8

Петя записал 25 чисел в клетки квадрата 5×5. Известно, что их сумма равна 500. Вася может попросить его назвать сумму чисел в любой клетке и всех её соседях по стороне. Может ли Вася за несколько таких вопросов узнать, какое число записано в центральной клетке?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .