Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 149]
На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что AK = BL = a,
KM = LM = b и угол KML прямой. Докажите, что a = b.
|
|
Сложность: 4- Классы: 9,10,11
|
Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.
|
|
Сложность: 4- Классы: 8,9,10
|
Точка O – центр описанной окружности остроугольного треугольника ABC. Прямая, перпендикулярная стороне AC, пересекает сторону BC и прямую AB в точках Q и P соответственно. Докажите, что точки B, O и середины отрезков AP и CQ лежат на одной окружности.
|
|
Сложность: 4- Классы: 9,10,11
|
На прямой отмечено 100 точек, и ещё одна точка отмечена вне прямой. Рассмотрим все треугольники с вершинами в этих точках.
Какое наибольшее количество из них могут быть равнобедренными?
|
|
Сложность: 4- Классы: 9,10,11
|
Петя нарисовал многоугольник площадью 100 клеток, проводя границы по линиям квадратной сетки. Он проверил, что его можно разрезать по границам клеток и на два равных многоугольника, и на 25 равных многоугольников. Обязательно ли тогда его можно разрезать по границам клеток и на 50 равных многоугольников?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 149]