ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



Задача 65156

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношения линейных элементов подобных треугольников ]
[ Гомотетия помогает решить задачу ]
[ Композиция преобразований плоскости ]
Сложность: 4-
Классы: 9,10,11

Точки K и L делят медиану AM треугольника ABC на три равные части, точка K лежит между L и . Отметили точку P так, что треугольники KPL и ABC подобны, причём P и C лежат в одной полуплоскости относительно прямой AM. Докажите, что P лежит на прямой AC.

Прислать комментарий     Решение

Задача 65160

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?
б) Тот же вопрос для натуральных чисел x, x², x³, ..., x2015.

Прислать комментарий     Решение

Задача 65161

Темы:   [ Невыпуклые многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Каждая сторона некоторого многоугольника обладает таким свойством: на прямой, содержащей эту сторону, лежит ещё хотя бы одна вершина многоугольника. Может ли число вершин этого многоугольника
  а) не превосходить девяти;
  б) не превосходить восьми?

Прислать комментарий     Решение

Задача 65194

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Принцип Дирихле (площадь и объем) ]
Сложность: 4-
Классы: 9,10

Каждый день Фрёкен Бок испекает квадратный торт размером 3×3. Карлсон немедленно вырезает себе из него четыре квадратных куска размером 1×1 со сторонами, параллельными сторонам торта (не обязательно по линиям сетки 3×3). После этого Малыш вырезает себе из оставшейся части торта квадратный кусок со сторонами, также параллельными сторонам торта. На какой наибольший кусок торта может рассчитывать Малыш вне зависимости от действий Карлсона?

Прислать комментарий     Решение

Задача 65455

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Трое играют в "камень-ножницы-бумагу". В каждом раунде каждый наугад показывает "камень", "ножницы" или "бумагу". "Камень" побеждает "ножницы", "ножницы" побеждают "бумагу", "бумага" побеждает "камень". Если в раунде было показано ровно два различных элемента (и значит, один из них показали дважды), то игроки (или игрок), показавшие победивший элемент, получают по 1 баллу; иначе баллы никому не начисляются. После нескольких раундов оказалось, что все элементы были показаны одинаковое количество раз. Докажите, что в этот момент сумма набранных всеми баллов делилась на 3.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .