Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Кузнецов Д.Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Автор: Калинин А.

Докажите, что уравнение  x³ + y³ = 4(x²y + xy² + 1)  не имеет решений в целых числах.

Вниз   Решение


В таблице 2×n расставлены положительные числа так, что в каждом из n столбцов сумма двух чисел равна 1.
Докажите, что можно вычеркнуть по одному числу в каждом столбце так, чтобы в каждой строке сумма оставшихся чисел не превосходила  n+1/4.

ВверхВниз   Решение


В некоторые 16 клеток доски 8×8 поставили по ладье. Какое наименьшее количество пар бьющих друг друга ладей могло при этом оказаться?

ВверхВниз   Решение


Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

ВверхВниз   Решение


Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 3)(n + 4)  будет целым.

ВверхВниз   Решение


В 12 часов дня "Запорожец" и "Москвич" находились на расстоянии 90 км и начали двигаться навстречу друг другу с постоянной скоростью. Через два часа они снова оказались на расстоянии 90 км. Незнайка утверждает, что "Запорожец" до встречи с "Москвичом" и "Москвич" после встречи с "Запорожцем" проехали в сумме 60 км. Докажите, что он неправ.

ВверхВниз   Решение


Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого является число   + .

ВверхВниз   Решение


Автор: Дужин С.В.

Улицы города Дужинска – простые ломаные, не пересекающиеся между собой во внутренних точках. Каждая улица соединяет два перекрёстка и покрашена в один из трёх цветов: белый, красный или синий. На каждом перекрёстке сходятся ровно три улицы, по одной каждого цвета. Перекрёсток называется положительным, если при его обходе против часовой стрелки цвета улиц идут в следующем порядке: белый, синий, красный, и отрицательным в противном случае. Докажите, что разность между числом положительных и числом отрицательных перекрёстков кратна 4.

ВверхВниз   Решение


Автор: Купцов Л.

Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.

ВверхВниз   Решение


Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).

Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 108107

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точки M и N – середины сторон BC и CD соответственно. Могут ли лучи AM и AN делить угол BAD на три равные части?

Прислать комментарий     Решение

Задача 109770

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Метод координат на плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)

Прислать комментарий     Решение

Задача 109877

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правильные многоугольники ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 3+
Классы: 8,9,10

Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.).

Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности.

Прислать комментарий     Решение

Задача 110009

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

По кругу выписаны в некотором порядке все натуральные числа от 1 до N , N2 . При этом для любой пары соседних чисел имеется хотя бы одна цифра, встречающаяся в десятичной записи каждого из них. Найдите наименьшее возможное значение N .
Прислать комментарий     Решение


Задача 109529

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Перебор случаев ]
Сложность: 3+
Классы: 9,10,11

Найдите все натуральные числа n, для которых сумма цифр числа 5n равна 2n.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .