ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Казахстан |
|||||||||||||||||
Версия для печати
Убрать все задачи Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.)
В пифагоровой таблице умножения выделили прямоугольную рамку толщиной в одну клетку, причём каждая сторона рамки состоит из нечётного числа клеток. Клетки рамки поочередно раскрасили в два цвета – чёрный и белый. Докажите, что сумма чисел в чёрных клетках равна сумме чисел в белых клетках. В семье 4 человека. Если Маше удвоят стипендию, общий доход всей семьи возрастет на 5%, если вместо этого маме удвоят зарплату – на 15%, если же зарплату удвоят папе – на 25%. На сколько процентов возрастет доход всей семьи, если дедушке удвоят пенсию?
Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB. Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011? Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо). Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный? |
Страница: 1 [Всего задач: 1]
Выпуклый многоугольник описан около окружности. Точки касания его сторон с окружностью образуют многоугольник с таким же набором углов (порядок углов может быть другим). Верно ли, что многоугольник правильный?
Страница: 1 [Всего задач: 1]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке