Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Юран А.Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Автор: Храбров А.

Даны целые числа a, b и c,  c ≠ b.  Известно, что квадратные трёхчлены  ax² + bx + c  и  (c – b)x² + (c – a)x + (a + b)  имеют общий корень (не обязательно целый). Докажите, что  a + b + 2c  делится на 3.

Вниз   Решение


В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?

ВверхВниз   Решение


Вот несколько примеров, когда сумма квадратов k последовательных натуральных чисел равна сумме квадратов k – 1 следующих натуральных чисел:

32 + 42 = 52,

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442,

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652.

Найдите общую формулу, охватывающую все такие случаи.

ВверхВниз   Решение


В клетчатом прямоугольнике 49×69 отмечены все 50· 70 вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 67302

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9,10,11

Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.
Прислать комментарий     Решение

Задача 67239

Темы:   [ Правильные многоугольники ]
[ Наглядная геометрия ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Юран А.Ю.

Можно ли поместить правильный треугольник внутрь правильного шестиугольника так, чтобы из любой вершины шестиугольника были видны все три вершины треугольника? (Точка $A$ видна из точки $B$, если отрезок $AB$ не содержит внутренних точек треугольника.)
Прислать комментарий     Решение


Задача 67016

Темы:   [ Четырехугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?

Прислать комментарий     Решение

Задача 67297

Темы:   [ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9,10,11

Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67405

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Неравенства с площадями ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

В квадратном листе бумаги площади $1$ проделали дыру в форме треугольника (вершины дыры не выходят на границу листа). Докажите, что из оставшейся бумаги можно вырезать треугольник площади $\frac16$.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .