Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Марданов А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 67111

Темы:   [ Трапеции (прочее) ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3
Классы: 8,9,10,11

Точка M – середина большей боковой стороны CD прямоугольной трапеции ABCD. Описанные около треугольников BCM и AMD окружности ω1 и ω2 пересекаются в точке E. Пусть ED пересекает ω1 в точке F, а FB пересекает AD в G. Докажите, что GM – биссектриса угла BGD.
Прислать комментарий     Решение


Задача 67122

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9,10,11

Хорды AB и CD окружности ω пересекаются в точке E, причем AD=AE=EB. На отрезке CE отметили точку F, так что ED=CF. Биссектриса угла AFC пересекает дугу DAC в точке P. Докажите, что точки A, E, F и P лежат на одной окружности.
Прислать комментарий     Решение


Задача 66969

Темы:   [ Теоремы Чевы и Менелая ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9,10,11

Через точку внутри треугольника провели три чевианы. Оказалось, что длины шести отрезков, на которые они разбивают стороны треугольника, образуют в каком-то порядке геометрическую прогрессию. Докажите, что длины чевиан тоже образуют геометрическую прогрессию.
Прислать комментарий     Решение


Задача 67113

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9,10,11

Четырёхугольник ABCD вписан в окружность с центром O. Пусть P – точка пересечения его диагоналей, а точки M и N – середины сторон AB и CD соответственно. Окружность OPM вторично пересекает отрезки AP и BP в точках A1 и B1 соответственно, а окружность OPN вторично пересекает отрезки CP и DP в точках C1 и D1 соответственно. Докажите, что площади четырёхугольников AA1B1B и CC1D1D равны.
Прислать комментарий     Решение


Задача 67120

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Средняя линия, параллельная стороне AC треугольника ABC, пересекает его описанную окружность в точках X и Y. Пусть I – центр вписанной окружности треугольника ABC, а D – середина дуги AC, не содержащей точку B. На отрезке DI отметили точку L такую, что DL=BI/2. Докажите, что из точек X и Y отрезок IL виден под равными углами.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .