Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 87]
В выпуклом пятиугольнике ABCDE углы ABC и CDE равны по
90o,
стороны BC, CD и AE равны по 1 и сумма сторон AB и DE равна 1.
Докажите, что площадь пятиугольника равна 1.
|
|
|
Сложность: 4- Классы: 10,11
|
Сфера касается всех рёбер тетраэдра. Соединим точки касания на парах несмежных рёбер.
Докажите, что три полученные прямые пересекаются в одной точке.
Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1.
При каких N эти положения радиуса делят круг на N равных секторов?
а) Верно ли, что к числу таких N относятся все степени двойки?
б) Относятся ли к числу таких N какие-либо числа, не являющиеся
степенями двойки?
|
|
|
Сложность: 4- Классы: 10,11
|
В равностороннем треугольнике ABC на стороне AB взята точка D так, что AD = AB/n.
Докажите,что сумма n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей, равна 30°:
а) при n = 3;
б) при произвольном n.
|
|
|
Сложность: 4- Классы: 7,8,9
|
В таблицу записано девять чисел:
Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её
столбцов:
a1b1c1 +
a2b2c2 +
a3b3c3 =
a1a2a3 +
b1b2b3 +
c1c2c3.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 87]