ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Рубанов И.С.

Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.

Вниз   Решение


Про грибы.В корзине лежат 30 грибов. Среди любых 12 из них имеется хотя бы один рыжик, а среди любых 20 грибов — хотя бы один груздь. Сколько рыжиков и сколько груздей в корзине?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 110108

Тема:   [ Теория игр (прочее) ]
Сложность: 4-
Классы: 7,8,9

Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 110123

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
Сложность: 4-
Классы: 9,10,11

Квадратные трёхчлены  P(x) = x² + ax + b  и  Q(x) = x² + cx + d  таковы, что уравнение  P(Q(x)) = Q(P(x))  не имеет действительных корней.
Докажите, что  b ≠ d .

Прислать комментарий     Решение

Задача 110166

Темы:   [ Взвешивания ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

Имеется набор гирь со следующими свойствами:

  1. В нем есть 5 гирь, попарно различных по весу.
  2. Для любых двух гирь найдутся две другие гири того же суммарного веса.
Какое наименьшее число гирь может быть в этом наборе?
Прислать комментарий     Решение

Задача 109528

Темы:   [ Квадратные уравнения и системы уравнений ]
[ Теория игр (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 8,9,10,11

На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

Прислать комментарий     Решение

Задача 109576

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .