ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Дедка вдвое сильнее Бабки, Бабка втрое сильнее Внучки, Внучка вчетверо сильнее Жучки, Жучка впятеро сильнее Кошки, Кошка вшестеро сильнее Мышки. Дедка, Бабка, Внучка, Жучка и Кошка вместе с Мышкой могут вытащить Репку, а без Мышки — не могут. Сколько надо позвать Мышек, чтобы они смогли сами вытащить Репку?

Вниз   Решение


Решить систему уравнений:
   x1 + x2 + x3 = 6,
   x2 + x3 + x4 = 9,
   x3 + x4 + x5 = 3,
   x4 + x5 + x6 = –3,
   x5 + x6 + x7 = –9,
   x6 + x7 + x8 = –6,
   x7 + x8 + x1 = –2,
   x8 + x1 + x2 = 2.

ВверхВниз   Решение


На доске написана функция  sin $x$ + cos $x$.  Разрешается написать на доске производную любой написанной ранее функции, а также сумму и произведение любых двух написанных ранее функций, так можно делать много раз. В какой-то момент на доске оказалась функция, равная для всех действительных $x$ некоторой константе $c$. Чему может равняться $c$?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



Задача 110177  (#05.4.11.7)

Темы:   [ Задачи с ограничениями ]
[ Десятичная система счисления ]
[ Иррациональные неравенства ]
Сложность: 4+
Классы: 9,10,11

Каких точных квадратов, не превосходящих 1020, больше: тех, у которых семнадцатая с конца цифра – 7, или тех, у которых семнадцатая с конца цифра – 8?

Прислать комментарий     Решение

Задача 110178  (#05.4.11.8)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Разбиения на пары и группы; биекции ]
[ Полуинварианты ]
[ Процессы и операции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 6-
Классы: 9,10,11

В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .