ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестёрка. Сколько их?

Вниз   Решение


Каким может быть произведение нескольких различных простых чисел, если оно кратно каждому из них, уменьшенному на 1?
Найдите все возможные значения этого произведения.

ВверхВниз   Решение


Треугольник ABC правильный, P — произвольная точка. Докажите, что перпендикуляры, опущенные из центров вписанных окружностей треугольников PAB, PBC и PCA на прямые AB, BC и CA, пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 56978

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.
Прислать комментарий     Решение


Задача 56979

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Выразите длину симедианы AS через длины сторон треугольника ABC.
Прислать комментарий     Решение


Задача 56980

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Отрезок B1C1, где точки B1 и C1 лежат на лучах AC и AB, называют антипараллельным стороне BC, если  $ \angle$AB1C1 = $ \angle$ABC и  $ \angle$AC1B1 = $ \angle$ACB. Докажите, что симедиана AS делит пополам любой отрезок B1C1, антипараллельный стороне BC.
Прислать комментарий     Решение


Задача 56981

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1$ \bot$OA, где O — центр описанной окружности.
Прислать комментарий     Решение


Задача 56982

Тема:   [ Точка Лемуана ]
Сложность: 4
Классы: 9

Касательная в точке B к описанной окружности S треугольника ABC пересекает прямую AC в точке K. Из точки K проведена вторая касательная KD к окружности S. Докажите, что BD — симедиана треугольника ABC.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .