ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Разрежьте фигуру, полученную из прямоугольника 4×5 вырезанием четырёх угловых клеток 1×1, на три части, не являющиеся квадратами, так, чтобы из этих частей можно было сложить квадрат. Решить систему уравнений Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр. Докажите, что a ≡ b (mod m) тогда и только тогда, когда a – b делится на m. а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета. |
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Двое играют на доске 19×94 клеток. Каждый по очереди отмечает квадрат по линиям сетки (любого возможного размера) и закрашивает его. Выигрывает тот, кто закрасит последнюю клетку. Дважды закрашивать клетки нельзя. Кто выиграет при правильной игре и как надо играть?
Придворный астролог называет момент времени хорошим, если часовая, минутная и секундная стрелки часов находятся по одну сторону от какого-нибудь диаметра циферблата (стрелки вращаются на общей оси и не делают скачков). Какого времени в сутках больше, хорошего или плохого?
Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.
Каждый из 1994 депутатов парламента дал пощечину ровно одному своему коллеге. Докажите, что можно составить парламентскую комиссию из 665 человек, члены которой не выясняли отношений между собой указанным выше способом.
Страница: << 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке