Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Шноль Д.Э.

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

Вниз   Решение


Хорды AC и BD окружности с центром O пересекаются в точке K. Пусть M и N – центры описанных окружностей треугольников AKB и CKD соответственно. Докажите, что  OM = KN.

ВверхВниз   Решение


Правильный треугольник разбит на n2 одинаковых правильных треугольников (рис.). Часть из них занумерована числами 1, 2,..., m, причем треугольники с последовательными номерами имеют смежные стороны. Докажите, что m$ \le$n2 - n + 1.

ВверхВниз   Решение


При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 56562

Тема:   [ Угол между касательной и хордой ]
Сложность: 2
Классы: 8

Две окружности пересекаются в точках P и Q. Через точку A первой окружности проведены прямые AP и AQ, пересекающие вторую окружность в точках B и C. Докажите, что касательная в точке A к первой окружности параллельна прямой BC.
Прислать комментарий     Решение


Задача 56564

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точках A и B. Через точку A проведена касательная AQ к окружности S1 (точка Q лежит на S2), а через точку B -- касательная BS к окружности S2 (точка S лежит на S1). Прямые BQ и AS пересекают окружности S1 и S2 в точках R и P. Докажите, что PQRS — параллелограмм.
Прислать комментарий     Решение


Задача 56565

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Касательная в точке A к описанной окружности треугольника ABC пересекает прямую BC в точке EAD — биссектриса треугольника ABC. Докажите, что AE = ED.
Прислать комментарий     Решение


Задача 56566

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.
Прислать комментарий     Решение


Задача 56567

Тема:   [ Угол между касательной и хордой ]
Сложность: 3
Классы: 8

Две окружности пересекаются в точках A и B. Из точки A к этим окружностям проведены касательные AM и AN (M и N — точки окружностей). Докажите, что:
а)  $ \angle$ABN + $ \angle$MAN = 180o;
б)  BM/BN = (AM/AN)2.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .