ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Используя пять троек, арифметические действия и возведение в степень, составьте числа от 16 до 20.
В треугольнике ABC с периметром 2p величина острый угол ABC
равен
Даны 1002 различных числа, не превосходящих
2000. Докажите, что из них можно выбрать три таких числа, что
сумма двух из них равна третьему. Останется ли это утверждение
справедливым, если число 1002 заменить на 1001?
|
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
В квадрате со стороной 1 находится 51 точка.
Докажите, что какие-то три из них можно накрыть кругом
радиуса 1/7.
Два неравных картонных диска разделены на 1965 равных секторов. На каждом из
дисков произвольно выбраны 200 секторов и раскрашены в красный цвет. Меньший
диск наложен на больший, так что их центры совпадают, а секторы целиком лежат
один против другого. Меньший диск поворачивают на всевозможные углы, кратные
Каждая из девяти прямых разбивает квадрат на
два четырехугольника, площади которых относятся как 2 : 3.
Докажите, что по крайней мере три из этих девяти прямых
проходят через одну точку.
В парке растет 10000 деревьев, посаженных квадратно-гнездовым
способом (100 рядов по 100 деревьев). Какое наибольшее число деревьев
можно срубить, чтобы выполнялось следующее условие: если встать на любой
пень, то не будет видно ни одного другого пня? (Деревья можно
считать достаточно тонкими.)
Какое наименьшее число точек достаточно отметить
внутри выпуклого n-угольника, чтобы внутри любого треугольника
с вершинами в вершинах n-угольника содержалась
хотя бы одна отмеченная точка?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке