Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

a) Петя и Вася задумали по три натуральных числа. Петя для каждых двух своих чисел написал на доске их наибольший общий делитель. Вася для каждых двух из своих чисел написал на доске их наименьшее общее кратное. Оказалось, что Петя написал на доске те же числа, что и Вася (возможно в другом порядке). Докажите, что все написанные на доске числа равны.

б) Останется ли верным утверждение предыдущей задачи, если Петя и Вася изначально задумали по четыре натуральных числа?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 64611  (#1)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Бумажный треугольник, один из углов которого равен α, разрезали на несколько треугольников. Могло ли случиться, что все углы всех полученных треугольников меньше α
  а) в случае, если  α = 70°;
  б) в случае, если  α = 80°?
Прислать комментарий     Решение


Задача 64612  (#2)

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 10,11

На числовой прямой в точке P сидит точечный кузнечик. Точки 0 и 1 – ловушки. На каждом ходу мы называем любое положительное число, после чего кузнечик прыгает влево или вправо (по своему выбору) на расстояние, равное этому числу. Для каких P можно называть числа так, чтобы гарантированно загнать кузнечика в одну из ловушек? (Мы всё время видим, где сидит кузнечик.)

Прислать комментарий     Решение

Задача 64613  (#3)

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Средние величины ]
[ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 10,11

Многочлен степени  $n > 1$  имеет $n$ разных корней $х_1$, $х_2$, ..., $х_n$. Его производная имеет корни $y_1$, $y_2$, ..., $y_{n-1}$. Докажите неравенство $$\frac{x_1^2 + \dots + x_n^2}{n} > \frac{y_1^2 + \dots + y_{n-1}^2}{n-1}.$$
Прислать комментарий     Решение


Задача 64614  (#4)

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Проективная геометрия (прочее) ]
[ Системы точек и отрезков (прочее) ]
[ Теорема синусов ]
Сложность: 4
Классы: 10,11

Петя и Вася нарисовали по четырёхугольнику без параллельных сторон. Каждый провёл в своём четырёхугольнике одну из диагоналей и вычислил углы, образованные этой диагональю со сторонами своего четырёхугольника. Петя получил числа α, α, β и γ (в некотором порядке), и Вася – тоже эти числа (возможно, в другом порядке). Докажите, что диагонали четырёхугольника Пети пересекаются под теми же углами, что и диагонали четырёхугольника Васи.

Прислать комментарий     Решение

Задача 64615  (#5)

Темы:   [ Последовательности (прочее) ]
[ Простые числа и их свойства ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Все натуральные числа выписали в ряд в некотором порядке (каждое число по одному разу). Обязательно ли найдутся несколько (больше одного) чисел, выписанных подряд (начиная с какого-то места), сумма которых будет простым числом?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .