ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существуют ли три таких различных простых числа p, q, r, что p² + d делится на qr, q² + d делится на rp, r² + d делится на pq, если
|
Страница: 1 [Всего задач: 5]
Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину,
отличную от 1 (у каждого из остальных ребро равно 1).
a и b – натуральные числа. Известно, что a² + b² делится на ab. Докажите, что a = b.
Центр круга – точка с декартовыми координатами (a, b). Известно, что начало координат лежит внутри круга. Обозначим через S+ общую площадь частей круга, состоящих из точек, обе координаты которых имеют одинаковый знак; а через S– – площадь частей, состоящих из точек с координатами разных знаков. Найдите величину S+ – S–.
Около правильного тетраэдра ABCD описана сфера. На его гранях как на основаниях построены во внешнюю сторону правильные пирамиды ABCD', ABDC', ACDB', BCDA', вершины которых лежат на этой сфере. Найдите угол между плоскостями ABC' и ACD'.
Играют двое, ходят по очереди. Первый ставит на плоскости красную точку, второй в ответ ставит на свободные места 10 синих точек. Затем опять первый ставит на свободное место красную точку, второй ставит на свободные места 10 синих, и т.д. Первый считается выигравшим, если какие-то три красные точки образуют правильный треугольник. Может ли второй ему помешать?
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке