ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Известно, что каждое из целых чисел a, b, c, d делится на ab – cd. Докажите, что ab – cd равно либо 1, либо –1. Доказать, что из любых 2001 целых чисел найдутся два, разность которых делится на 2000. Система точек, соединённых отрезками, называется "связной", если из каждой точки можно пройти в любую другую по этим отрезкам. Можно ли соединить пять точек в связную систему так, чтобы при стирании любого отрезка образовались ровно две связные системы точек, не связанные друг с другом? (Мы считаем, что в местах пересечения отрезков переход с одного из них на другой невозможен.) Дан треугольник ABC. На продолжении стороны AC за точку A
отложен отрезок AD = AB, а за точку C – отрезок CE = CB. |
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 6702]
Найдите стороны и углы четырёхугольника с вершинами в серединах сторон ромба, диагонали которого равны 6 и 10.
В равнобедренной трапеции острый угол равен 60o. Докажите, что меньшее основание равно разности большего основания и боковой стороны.
Расстояния от концов диаметра окружности до некоторой касательной равны a и b. Найдите радиус окружности.
Окружность касается всех сторон равнобедренной трапеции. Докажите, что боковая сторона трапеции равна средней линии.
Основания равнобедренной трапеции равны a и b (a > b), острый угол равен 45o. Найдите площадь трапеции.
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке