ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В неравнобедренном треугольнике ABC проведены медианы AK и BL . Углы BAK и CBL равны 30o . Найдите углы треугольника ABC . Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник. Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя Пусть P(x) = anxn + ... + a1x + a0 – многочлен с целыми коэффициентами. |
Страница: 1 [Всего задач: 5]
Точка P перемещается по описанной окружности
квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая,
проходящая через точку Q параллельно AC, пересекает прямую BP в
точке X. Найдите ГМТ X.
На окружности фиксированы точки A и B, а точка C
перемещается по этой окружности. Найдите множество точек пересечения:
а) высот; б) биссектрис треугольников ABC.
На плоскости даны четыре точки. Найдите множество
центров прямоугольников, образуемых четырьмя прямыми,
проходящими соответственно через данные точки.
а) На окружности фиксированы точки A и B, а
точки A1 и B1 движутся по той же окружности так, что величина
дуги A1B1 остается постоянной; M — точка пересечения
прямых AA1 и BB1. Найдите ГМТ M.
Найдите ГМТ X, лежащих внутри правильного
треугольника ABC и обладающих тем свойством, что
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке