Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В неравнобедренном треугольнике ABC проведены медианы AK и BL . Углы BAK и CBL равны 30o . Найдите углы треугольника ABC .

Вниз   Решение


Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что  AM = AN = AB  (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.

ВверхВниз   Решение


Существуют ли такие десять попарно различных натуральных чисел, что их среднее арифметическое больше их наибольшего общего делителя
  а) ровно в шесть раз;
  б) ровно в пять раз?

ВверхВниз   Решение


Пусть  P(x) = anxn + ... + a1x + a0  – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел  |3n+1P(n + 1)|,  ...,  |31P(1)|,  |1 – P(0)|  не меньше 1.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57148

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9

Точка P перемещается по описанной окружности квадрата ABCD. Прямые AP и BD пересекаются в точке Q, а прямая, проходящая через точку Q параллельно AC, пересекает прямую BP в точке X. Найдите ГМТ X.
Прислать комментарий     Решение


Задача 57147

Темы:   [ ГМТ и вписанный угол ]
[ Углы между биссектрисами ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 8,9

На окружности фиксированы точки A и B, а точка C перемещается по этой окружности. Найдите множество точек пересечения: а) высот; б) биссектрис треугольников ABC.
Прислать комментарий     Решение


Задача 57150

Темы:   [ ГМТ и вписанный угол ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

На плоскости даны четыре точки. Найдите множество центров прямоугольников, образуемых четырьмя прямыми, проходящими соответственно через данные точки.
Прислать комментарий     Решение


Задача 57149

Темы:   [ ГМТ и вписанный угол ]
[ ГМТ - окружность или дуга окружности ]
[ Поворот (прочее) ]
Сложность: 4
Классы: 8,9

а) На окружности фиксированы точки A и B, а точки A1 и B1 движутся по той же окружности так, что величина дуги A1B1 остается постоянной; M — точка пересечения прямых AA1 и BB1. Найдите ГМТ M.
б) В окружность вписаны треугольники ABC и A1B1C1, причем треугольник ABC неподвижен, а треугольник A1B1C1 вращается. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке не более чем при одном положении треугольника A1B1C1.
Прислать комментарий     Решение


Задача 57151

Темы:   [ ГМТ и вписанный угол ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 5
Классы: 8,9

Найдите ГМТ X, лежащих внутри правильного треугольника ABC и обладающих тем свойством, что  $ \angle$XAB + $ \angle$XBC + $ \angle$XCA = 90o.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .