ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Кати и Маши расчёски одинаковой длины. У каждой расчёски все зубчики одинаковые, а расстояния между зубчиками равны ширине зубчика. В Катиной расчёске 11 зубчиков (см. рис.). Сколько зубчиков в Машиной расчёске, если они в пять раз уже зубчиков Катиной расчёски?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]      



Задача 31251  (#21)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 6,7,8

Доказать, что  22n–1 + 3n + 4  делится на 9 при любом n.

Прислать комментарий     Решение

Задача 31252  (#22)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

x² ≡ y² (mod 239).  Доказать, что  xy  или  x ≡ – y.

Прислать комментарий     Решение

Задача 31253  (#23)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 6,7,8

Доказать, что  221989 – 1  делится на 17.

Прислать комментарий     Решение

Задача 31254  (#24)

Темы:   [ Арифметика остатков (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 6,7,8

a1 = a2 = 1,  an+1 = anan–1 + 1.  Доказать, что an не делится на 4.

Прислать комментарий     Решение

Задача 31255  (#25)

Темы:   [ Арифметика остатков (прочее) ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
Сложность: 4-
Классы: 6,7,8

Доказать, что
  а) Степень двойки не может оканчиваться на четыре одинаковых цифры.
  б) Квадрат не может состоять из одинаковых цифр (если он не однозначный).
  в) Квадрат не может оканчиваться на четыре одинаковых цифры.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .