|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подисточники:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи a, b, c, d – положительные числа. Докажите, что по крайней мере одно из неравенств Тане было 16 лет 19 месяцев назад, а Мише будет 19 лет через 16 месяцев. Кто из них старше? Ответ объясните. Треугольники ABC1 и ABC2 вписаны в окружность S, причем хорды AC2 и BC1 пересекаются. Окружность S1 касается хорды AC2 в точке M2, хорды BC1 в точке N1 и окружности S. Докажите, что центры вписанных окружностей треугольников ABC1 и ABC2 лежат на отрезке M2N1. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132]
Указать все денежные суммы, выраженные целым числом рублей, которые могут быть представлены как чётным, так и нечётным числом денежных билетов. (В обращении имелись билеты достоинством в 1, 3, 5, 10, 25, 50 и 100 рублей.)
удовлетворяющие условиям 0
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
30 команд участвуют в розыгрыше первенства по футболу.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 132] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|