ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом
играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что ровно половина мам честно голосует за лучший спектакль, а другая половина в любом случае голосует за спектакль, в котором участвует её ребенок.
В равнобедренном треугольнике ABC с тупым углом A,
равным
|
Страница: 1 2 >> [Всего задач: 6]
В треугольнике ABC ∠A = 45°, BH – высота, точка K лежит на стороне AC, причём BC = CK.
Дан параллелограмм ABCD. На стороне AB взята точка M так, что AD = DM. На стороне AD взята точка N так, что AB = BN.
Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?
В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.
Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке