ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

Вниз   Решение


На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.

Вверх   Решение

Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 64898  (#11.4.2)

Темы:   [ Частные случаи тетраэдров (прочее) ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4-
Классы: 10,11

В тетраэдре АВСDАВ = 8,  ВС = 10,  АС = 12,  BD = 15.  Известно, что четыре отрезка, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противолежащие грани, пересекаются в одной точке. Найдите длины рёбер DA и DC.

Прислать комментарий     Решение

Задача 64899  (#11.4.3)

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

В равенстве  х5 + 2x + 3 = pk  числа х и k – натуральные. Может ли число р быть простым?

Прислать комментарий     Решение

Задача 64900  (#11.5.1)

Тема:   [ Иррациональные неравенства ]
Сложность: 3+
Классы: 10,11

Найдите наименьшее значение дроби x/y, если   .

Прислать комментарий     Решение

Задача 64901  (#11.5.2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Отношения площадей подобных фигур ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 9,10,11

Правильный треугольник со стороной 1 разрезан произвольным образом на равносторонние треугольники, в каждый из которых вписан круг.
Найдите сумму площадей этих кругов.

Прислать комментарий     Решение

Задача 64902  (#11.5.3)

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 10,11

Сумма цифр натурального числа n равна сумме цифр числа  2n + 1.  Могут ли быть равными суммы цифр чисел  3n – 3  и  n – 2?

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .