ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 97886  (#1)

Темы:   [ Неравенство треугольника (прочее) ]
[ Четырехугольник (неравенства) ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Дан выпуклый четырёхугольник и точка M внутри него. Доказать, что сумма расстояний от точки M до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.

Прислать комментарий     Решение

Задача 97882  (#2)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Автор: Фомин С.В.

Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин.

  а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
  б) Можно ли утверждать, что в некоторый момент разница показаний часов была равна 2 мин.?

Прислать комментарий     Решение

Задача 34976  (#3)

Темы:   [ Дискретное распределение ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Автор: Фомин С.В.

Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Чему равна вероятность того, что у второго монета упала орлом большее число раз, чем у первого?

Прислать комментарий     Решение

Задача 97884  (#4)

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Последовательность чисел  x1, x2, ...  такова, что  x1 = ½  и     для всякого натурального k.

Найдите целую часть суммы  

Прислать комментарий     Решение

Задача 97890  (#5)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Векторы помогают решить задачу ]
[ Связность и разложение на связные компоненты ]
Сложность: 5
Классы: 10,11

а) Точка O лежит внутри выпуклого n-угольника A1A2A3...An. Рассматриваются углы AiOAj при всевозможных парах  (i, j)  (i, j – различные натуральные числа от 1 до n). Докажите, что среди этих углов найдётся по крайней мере  n – 1  не острых (прямых, тупых или развёрнутых) углов.

б) То же для выпуклого многогранника, имеющего n вершин.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .