Страница: 1
2 >> [Всего задач: 8]
Задача
109808
(#04.5.11.1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета
присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.
Задача
109795
(#04.5.11.2)
|
|
Сложность: 4+ Классы: 9,10,11
|
Пусть IA и IB – центры вневписанных окружностей, касающихся сторон BC и CA треугольника ABC соответственно, а P – точка на описанной окружности Ω этого треугольника. Докажите, что середина отрезка, соединяющего центры описанных
окружностей треугольников IACP и IBCP, совпадает с центром окружности Ω.
Задача
109796
(#04.5.11.3)
|
|
Сложность: 5 Классы: 9,10,11
|
Даны многочлены P(x), Q(x). Известно, что
для некоторого многочлена R(x, y) выполняется равенство
P(x) – P(y) = R(x, y)(Q(x) – Q(y)).
Докажите, что существует такой многочлен S(x), что P(x) = S(Q(x)).
Задача
109797
(#04.5.11.4)
|
|
Сложность: 5- Классы: 8,9,10,11
|
В прямоугольной таблице 9 строк и 2004 столбца. В её клетках расставлены числа от 1 до 2004, каждое – по 9 раз. При этом в каждом столбце числа различаются не более чем на 3. Найдите минимальную возможную сумму чисел в первой строке.
Задача
109798
(#04.5.11.5)
|
|
Сложность: 5+ Классы: 9,10,11
|
Пусть
M={x1, .., x30
} – множество, состоящее из 30 различных положительных
чисел;
An (
1
n 30
) – сумма всевозможных произведений различных
n элементов
множества
M . Докажите, что если
A15
>A10
, то
A1>1
.
Страница: 1
2 >> [Всего задач: 8]