ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Во что перейдёт угол градусной меры α вершиной в начале координат в результате преобразования w = z³? В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих. Точка z против часовой стрелки обходит квадрат с вершинами
–1 – i, 2 – i, 2 + 2i, –1 + 2i. Как при этом ведут себя точки В книге рекордов Гиннесса написано, что наибольшее известное простое число равно 23021377 – 1. Не опечатка ли это? Докажите, что на комплексной плоскости равенством |z – a| = k|z – b| при k ≠ 1 задается окружность (a и b – действительные числа). |
Страница: 1 2 3 >> [Всего задач: 12]
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
B равнобедренном треугольнике ABС на боковой стороне BС отмечена точка M так, что отрезок MС равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.
Из листа бумаги в клетку вырезали квадрат 2×2.
Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке