ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На поверхности правильного тетраэдра с ребром 1 отмечены девять точек.
Докажите, что среди этих точек найдутся две, расстояние между которыми (в пространстве) не превосходит 0,5.

Вниз   Решение


Существует ли на координатной плоскости прямая, относительно которой симметричен график функции y = 2x?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 110173  (#05.4.11.1)

Темы:   [ Тригонометрические уравнения ]
[ Монотонность и ограниченность ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 9,10,11

Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .
Прислать комментарий     Решение


Задача 110174  (#05.4.11.2)

Тема:   [ Тождественные преобразования ]
Сложность: 4+
Классы: 8,9,10,11

Известно, что существует число S , такое, что если a+b+c+d=S и +++=S ( a , b , c , d отличны от нуля и единицы), то + + += S . Найти S .
Прислать комментарий     Решение


Задача 110181  (#05.4.11.3)

Темы:   [ Раскраски ]
[ Задачи с ограничениями ]
[ Ориентированные графы ]
[ Перестановки и подстановки (прочее) ]
[ Отношение порядка ]
Сложность: 5-

Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Прислать комментарий     Решение

Задача 110199  (#05.4.11.4)

Темы:   [ Вспомогательная окружность ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10,11

AA1 и BB1 – высоты остроугольного неравнобедренного треугольника ABC. Известно, что отрезок A1B1 пересекает среднюю линию, параллельную AB, в точке C'. Докажите, что отрезок CC' перпендикулярен прямой, проходящей через точку пересечения высот и центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Задача 110175  (#05.4.11.5)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 9,10,11

Докажите, что для любого многочлена P с целыми коэффициентами и любого натурального k существует такое натуральное n, что  P(1) + P(2) + ... + P(n)  делится на k.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .