|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На доске 4×6 клеток стоят две чёрные фишки (Вани) и две белые фишки (Серёжи, см. рис.). Ваня и Серёжа по очереди двигают любую из своих фишек на одну клетку вперёд (по вертикали). Начинает Ваня. Если после хода любого из ребят чёрная фишка окажется между двумя белыми по горизонтали или по диагонали (как на нижних рисунках), она считается "убитой" и снимается с доски. Ваня хочет провести обе свои фишки с верхней горизонтали доски на нижнюю. Может ли Серёжа ему помешать?
|
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 141]
Пусть a, b и c – три различных числа. Решите систему
Пусть a, b и c – три различных числа. Докажите, что из равенств
Про многочлен f(x) = x10 + a9x9 + ... + a0 известно, что f(1) = f(–1), ..., f(5) = f(–5). Докажите, что f(x) = f(– x) для любого действительного x.
Пусть P(x) = anxn + ... + a1x + a0 – многочлен с целыми коэффициентами.
Докажите, что если f(x) – многочлен, степень которого меньше n, то дробь
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 141] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|