ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 7526]      



Задача 35592

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 2+
Классы: 8,9

Нужно узнать пятизначный номер телефона, задавая вопросы, на которые возможен ответ "да" или "нет". За какое наименьшее число вопросов это гарантированно можно сделать (при условии, что на вопросы даются правильные ответы)?
Прислать комментарий     Решение


Задача 35610

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Можно ли квадратный лист бумаги размером 2*2 сложить так, чтобы его можно было разрезать на 4 квадрата 1*1 одним взмахом ножницами?
Прислать комментарий     Решение


Задача 35612

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Метрические соотношения (прочее) ]
Сложность: 2+
Классы: 9,10

Бесконечный коридор ширины 1 поворачивает под прямым углом. Докажите, что можно подобрать проволоку так, чтобы расстояние между ее концами больше 4, и чтобы ее можно было протащить через этот коридор.
Прислать комментарий     Решение


Задача 35647

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 9,10

В график функции, симметричной относительно оси ординат, вписана "ёлочка" высотой 1. Известно, что "ветки" ёлочки составляют угол 450 с вертикалью. Найдите периметр ёлочки (т.е. сумму длин всех зеленых отрезков).
Прислать комментарий     Решение


Задача 35648

Тема:   [ Парадоксы ]
Сложность: 2+
Классы: 7,8,9

У деда Мороза бесконечное число конфет. За минуту до Нового года дед Мороз дает детям 100 конфет, а Снегурочка одну конфету отбирает. За полминуты до наступления Нового года дед Мороз дает детям еще 100 конфет, а Снегурочка снова одну конфету отбирает. То же самое повторяется за 15 секунд, за 7,5 секунд и т.д. до Нового года. Докажите, что Снегурочка сможет к Новому году отобрать у детей все конфеты.
Прислать комментарий     Решение


Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .