ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть A – некоторая точка пространства, B – ортогональная проекция точки A на плоскость α , l – некоторая прямая этой плоскости. Докажите, что ортогональные проекции точек A и B на эту прямую совпадают. Вершины A и B правильного треугольника ABC
лежат на окружности S, а вершина C — внутри этой окружности.
Точка D лежит на окружности S, причем BD = AB.
Прямая CD пересекает S в точке E. Докажите, что длина
отрезка EC равна радиусу окружности S.
Рассмотрим алгоритм Евклида из задачи 60488, состоящий из k
шагов. |
Страница: << 1 2 3 >> [Всего задач: 15]
Пусть A1 и B1 — проекции точки P описанной
окружности треугольника ABC на прямые BC и AC. Докажите,
что длина отрезка A1B1 равна длине проекции отрезка AB на
прямую A1B1.
На окружности фиксированы точки P и C; точки A
и B перемещаются по окружности так, что угол ACB остается
постоянным. Докажите, что прямые Симсона точки P относительно
треугольников ABC касаются фиксированной окружности.
Точка P движется по описанной окружности
треугольника ABC. Докажите, что при этом прямая Симсона точки P
относительно треугольника ABC поворачивается на угол, равный половине
угловой величины дуги, пройденной точкой P.
Докажите, что прямые Симсона двух диаметрально
противоположных точек описанной окружности треугольника ABC
перпендикулярны, а их точка пересечения лежит на окружности девяти
точек (см. задачу 5.106).
Точки A, B, C, P и Q лежат на окружности
с центром O, причем углы между вектором
Страница: << 1 2 3 >> [Всего задач: 15]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке