|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Заданы N различных точек плоскости и натуральное число M. Требуется найти максимальный по площади невырожденный M-угольник без самопересечений и самокасаний, вершинами которого являются некоторые из этих N точек. Входные данные В первой строке входного файла через пробел записаны два целых числа M и N (3 ≤ M ≤ N ≤ 10). Во второй строке перечислены N точек, каждая из которых задана парой своих координат. Координаты являются вещественными числами и разделяются пробелом. Выходные данные В первую строку выходного файла нужно вывести площадь искомого M-угольника, а во вторую – номера точек, являющихся вершинами этого M-угольника (в порядке обхода по или против часовой стрелки). Номера точек разделяются пробелом. Если вариантов решений несколько, то достаточно выдать любой из них. Если же ни один M-угольник с указанными свойствами построить невозможно, то выходной файл должен содержать единственное число 0. Пример входного файла 3 4 0 0 0 1 1 0 1 1 Пример выходного файла 0.5 1 2 3 |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]
Имеется бесконечная шахматная доска. Обозначим через (a, b) поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля (a, b) может сделать ход на любое из восьми полей: (a ± m, b ± n), (a ± n, b ± m), где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.
6n-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|