ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Заданы N различных точек плоскости и натуральное число M. Требуется найти максимальный по площади невырожденный M-угольник без самопересечений и самокасаний, вершинами которого являются некоторые из этих N точек.

Входные данные

В первой строке входного файла через пробел записаны два целых числа M и N (3 ≤ M ≤ N ≤ 10). Во второй строке перечислены N точек, каждая из которых задана парой своих координат. Координаты являются вещественными числами и разделяются пробелом.

Выходные данные

В первую строку выходного файла нужно вывести площадь искомого M-угольника, а во вторую – номера точек, являющихся вершинами этого M-угольника (в порядке обхода по или против часовой стрелки). Номера точек разделяются пробелом. Если вариантов решений несколько, то достаточно выдать любой из них. Если же ни один M-угольник с указанными свойствами построить невозможно, то выходной файл должен содержать единственное число 0.

Пример входного файла

3 4
0 0 0 1 1 0 1 1

Пример выходного файла

0.5
1 2 3

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 78226

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 9,10

Имеется бесконечная шахматная доска. Обозначим через  (a, b)  поле, расположенное на пересечении горизонтали с номером a и вертикали с номером b. Фишка с поля  (a, b)  может сделать ход на любое из восьми полей:  (a ± m, b ± n),  (a ± n, b ± m),  где m, n – фиксированные числа, а "+" и "–" комбинируются произвольно. Сделав x ходов, фишка вернулась на исходное поле. Доказать, что x чётно.

Прислать комментарий     Решение

Задача 78235

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

6n-значное число делится на 7. Последнюю цифру перенесли в начало. Доказать, что полученное число также делится на 7.

Прислать комментарий     Решение

Задача 78221

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3+
Классы: 8,9,10

Даны 4 точки: A, B, C, D. Найти такую точку O, что сумма расстояний от неё до данных точек минимальна.
Прислать комментарий     Решение


Задача 78222

Темы:   [ Неравенство треугольника (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Доказать, что из сторон произвольного четырёхугольника можно сложить трапецию.
Прислать комментарий     Решение


Задача 78225

Темы:   [ Системы точек ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 9,10

Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .