ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что существует бесконечно много таких троек чисел n – 1, n, n + 1, что: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин.
Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника?
Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.
Существует ли треугольник, в котором одна сторона равна какой-то из его высот, другая – какой-то из биссектрис, а третья – какой-то из медиан?
Даны две точки A и B. Найдите геометрическое место таких точек C, что точки A, B и C можно накрыть кругом единичного радиуса.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 49]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке