ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
В полукруге расположен прямоугольник ABCD так, что его сторона AB лежит на диаметре, ограничивающем полукруг, а вершины C и D — на ограничивающей полукруг дуге. Радиус полукруга равен 5. Найдите стороны прямоугольника ABCD, если его площадь равна 24, а диагональ больше 8.
Можно ли расставить на ребрах 5-угольной пирамиды стрелки, так что сумма всех образовавшихся 10 векторов была бы равна 0. |
Страница: 1 2 >> [Всего задач: 6]
В треугольнике ABC ∠A = 45°, BH – высота, точка K лежит на стороне AC, причём BC = CK.
Дан параллелограмм ABCD. На стороне AB взята точка M так, что AD = DM. На стороне AD взята точка N так, что AB = BN.
Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?
В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.
Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке