ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть x1, x2, ..., xn – некоторые числа, принадлежащие отрезку [0, 1]. Восстановите прямоугольный треугольник ABC (∠C = 90°) по вершинам A, C и точке на биссектрисе угла B . Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке Прямые AP, BP и CP пересекают стороны
треугольника ABC (или их продолжения) в точках A1, B1 и C1.
Докажите, что:
На плоскости даны точки A1 , A2 , An и точки B1 ,
B2 , Bn . Докажите, что точки Bi можно
перенумеровать так, что для всех i Метод Ньютона. Для приближенного нахождения корней уравнения f (x) = 0 Ньютон предложил искать последовательные приближения по формуле
xn + 1 = xn - (начальное условие x0
следует выбирать поближе к искомому корню).
Докажите, что для функции f (x) = x2 - k и начального условия x0 > 0 итерационный процесс всегда будет сходиться к Как будет выражаться xn + 1 через xn? Сравните результат с формулой из задачи 9.48. На какие натуральные числа можно сократить дробь
Сторона основания ABC правильной треугольной пирамиды
ABCD равна 4, угол между боковыми рёбрами
пирамиды равен arccos На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток. Основанием прямой призмы ABCDA1B1C1D1 служит равнобедренная трапеция ABCD , в которой AD || BC , AD:BC=n>1 . Параллельно диагонали B1D проведены плоскость через ребро AA1 и плоскость через ребро BC ; параллельно диагонали A1C проведены плоскость через ребро DD1 и плоскость через ребро B1C1 . Найдите отношение объёма треугольной пирамиды, ограниченной этими четырьмя плоскостями, к объёму призмы. Каков знак n-го члена в разложении произведения
(1 - a)(1 - b)(1 - c)(1 - d )...= 1 - a - b + ab - c + ac + bc - abc - d +...
(n = 0, 1, 2,...)?
Дан равнобедренный треугольник ABC (AB = AC). На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны. Решить уравнение [x³] + [x²] + [x] = {x} − 1. Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69]
Набор из нескольких чисел, среди которых нет одинаковых, обладает следующим свойством: среднее арифметическое каких-то двух чисел из этого набора равно среднему арифметическому каких-то трёх чисел из набора и равно среднему арифметическому каких-то четырёх чисел из набора. Каково наименьшее возможное количество чисел в таком наборе?
На доске выписаны числа 1, 2, ..., 100. На каждом этапе одновременно стираются все числа, не имеющие среди нестёртых чисел делителей, кроме себя самого. Например, на первом этапе стирается только число 1. Какие числа будут стёрты на последнем этапе?
Три числа x, y и z отличны от нуля и таковы, что x² – y² = yz и y² – z² = xz. Докажите, что x² – z² = xy.
В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.
Найдите
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке