Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Пусть  x1, x2, ..., xn  – некоторые числа, принадлежащие отрезку  [0, 1].
Докажите, что на этом отрезке найдется такое число x, что   1/n (|x – x1| + |x – x2| + ... + |x – xn|)  = ½.

Вниз   Решение


Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

ВверхВниз   Решение


Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

ВверхВниз   Решение


Прямые AP, BP и CP пересекают стороны треугольника ABC (или их продолжения) в точках A1, B1 и C1. Докажите, что:
а) прямые, проходящие через середины сторон BC, CA и AB параллельно прямым AP, BP и CP, пересекаются в одной точке;
б) прямые, соединяющие середины сторон BC, CA и AB с серединами отрезков AA1, BB1 и CC1, пересекаются в одной точке.

ВверхВниз   Решение


На плоскости даны точки A1 , A2 , An и точки B1 , B2 , Bn . Докажите, что точки Bi можно перенумеровать так, что для всех i j угол между векторами и – острый или прямой.

ВверхВниз   Решение


Метод Ньютона. Для приближенного нахождения корней уравнения f (x) = 0 Ньютон предложил искать последовательные приближения по формуле

xn + 1 = xn - $\displaystyle {\frac{f(x_n)}{f'(x_n)}}$,

(начальное условие x0 следует выбирать поближе к искомому корню).
Докажите, что для функции f (x) = x2 - k и начального условия x0 > 0 итерационный процесс всегда будет сходиться к $ \sqrt{k}$, то есть $ \lim\limits_{n\to\infty}^{}$xn = $ \sqrt{k}$.
Как будет выражаться xn + 1 через xn? Сравните результат с формулой из задачи 9.48.

ВверхВниз   Решение


На какие натуральные числа можно сократить дробь  ,  если известно, что она сократима и что числа m и n взаимно просты.

ВверхВниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 4, угол между боковыми рёбрами пирамиды равен arccos . Точки A1 и C1 – середины рёбер AD и CD соответственно, CB1 – высота в треугольнике BCD . Найдите: 1) угол между прямыми AC и B1C1 ; 2) площадь треугольника A1B1C1 ; 3) расстояние от точки A до плоскости A1B1C1 ; 4) радиус вписанного в пирамиду A1B1C1D шара.

ВверхВниз   Решение


На клетчатой бумаге отмечены четыре узла сетки, образующие квадрат 4*4. Отметьте ещё два узла и соедините их замкнутой ломаной так, чтобы получился шестиугольник (не обязательно выпуклый) площади 6 клеток.

ВверхВниз   Решение


Основанием прямой призмы ABCDA1B1C1D1 служит равнобедренная трапеция ABCD , в которой AD || BC , AD:BC=n>1 . Параллельно диагонали B1D проведены плоскость через ребро AA1 и плоскость через ребро BC ; параллельно диагонали A1C проведены плоскость через ребро DD1 и плоскость через ребро B1C1 . Найдите отношение объёма треугольной пирамиды, ограниченной этими четырьмя плоскостями, к объёму призмы.

ВверхВниз   Решение


Каков знак n-го члена в разложении произведения

(1 - a)(1 - b)(1 - c)(1 - d )...= 1 - a - b + ab - c + ac + bc - abc - d +...

(n = 0, 1, 2,...)?

ВверхВниз   Решение


Дан равнобедренный треугольник ABC  (AB = AC).  На меньшей дуге AB описанной около него окружности взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат в одной полуплоскости относительно BC. Описанная окружность треугольника BDE пересекает сторону AB в точке F. Докажите, что прямые EF и BC параллельны.

ВверхВниз   Решение


Решить уравнение  [x³] + [x²] + [x] = {x} − 1.

ВверхВниз   Решение


Между цифрами двузначного числа, кратного трем, вставили нуль, и к полученному трехзначному числу прибавили удвоенную цифру его сотен. Получилось число, в 9 раз большее первоначального. Найдите исходное число.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69]      



Задача 64996

Темы:   [ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Набор из нескольких чисел, среди которых нет одинаковых, обладает следующим свойством: среднее арифметическое каких-то двух чисел из этого набора равно среднему арифметическому каких-то трёх чисел из набора и равно среднему арифметическому каких-то четырёх чисел из набора. Каково наименьшее возможное количество чисел в таком наборе?

Прислать комментарий     Решение

Задача 64998

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Процессы и операции ]
Сложность: 3+
Классы: 7,8,9

На доске выписаны числа 1, 2, ..., 100. На каждом этапе одновременно стираются все числа, не имеющие среди нестёртых чисел делителей, кроме себя самого. Например, на первом этапе стирается только число 1. Какие числа будут стёрты на последнем этапе?

Прислать комментарий     Решение

Задача 64999

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9

Три числа x, y и z отличны от нуля и таковы, что  x² – y² = yz  и  y² – z² = xz.  Докажите, что  x² – z² = xy.

Прислать комментарий     Решение

Задача 65001

Темы:   [ Числовые последовательности (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

В ряд записаны 20 различных натуральных чисел. Произведение каждых двух из них, стоящих подряд, является квадратом натурального числа. Первое число равно 42. Докажите, что хотя бы одно из чисел больше чем 16000.

Прислать комментарий     Решение

Задача 65173

Тема:   [ Тождественные преобразования (тригонометрия) ]
Сложность: 3+
Классы: 10,11

Найдите     если   .

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 69]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .