|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.) |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48]
В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.
Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
В выпуклом четырёхугольнике ABCD выполнены соотношения AB = BD, ∠ABD = ∠DBC. На диагонали BD нашлась такая точка K, что BK = BC.
Найдите какие-нибудь семь последовательных натуральных чисел, каждое из которых можно изменить (увеличить или уменьшить) на 1 таким образом, чтобы произведение семи полученных в результате чисел равнялось произведению семи исходных чисел.
На гипотенузе BC прямоугольного треугольника ABC выбрана точка K так, что AB = AK. Отрезок AK пересекает биссектрису CL в её середине.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 48] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|