ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T an+T = an (n ≥ 0). Докажите, что |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]
Пусть О – центр правильного многоугольника A1A2A3...An, X
– произвольная точка плоскости. Докажите, что: б)
Докажите равенства:
Вычислите
Найдите cos 36° и cos 72°.
а) Используя геометрические соображения,
докажите, что основание и боковая сторона равнобедренного
треугольника с углом
36o при вершине несоизмеримы.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке