Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

a, b, c > 0  и  abc = 1.  Известно, что   a + b + c > 1/a + 1/b + 1/c.  Докажите, что ровно одно из чисел a, b, c больше 1.

Вниз   Решение


В Театре собираются поставить грандиозную пьесу из двух актов, в которой освещение имеет большое значение. Сцена театра имеет форму выпуклого многоугольника, заданного вершинами в декартовой прямоугольной системе координат. Над сценой находится прожектор, который может перемещаться над ней произвольным образом. Находясь в некоторой точке, прожектор освещает круглую область с центром в этой точке и радиусом R.

В первом акте на сцене лежат квадратные ковры размером HxH, стороны которых параллельны осям координат. Ковры могут частично выходить за пределы сцены. Рассмотрим фигуру, которая состоит из всех точек, находясь в которых, прожектор не освещает ни один из ковров и не освещает территорию вне сцены. Обозначим ее площадь как S1.

Перед вторым актом ковры убирают со сцены. Рассмотрим фигуру, которая состоит из всех точек, находясь в которых прожектор не освещает территорию вне сцены. Ее площадь обозначим как S2.

Задание

По предоставленным входным файлам, каждый из которых описывает сцену и размещение на ней ковров в первом акте, создайте соответствующие им выходные файлы, которые содержат площади S1 и S2 описанных выше фигур.

Входные данные

На вашем диске в каталоге DATA содержатся 10 файлов, которые имеют названия THEATER.D01, THEATER.D02, : , THEATER.D10, следующего формата.

В первой строке заданы числа R, H, N, M. Где R - радиус области, которую освещает прожектор. - длина стороны квадрата, который представляет ковер. N - количество вершин выпуклого многоугольника, который задает сцену. M - количество ковров. Во второй строке находятся N пар чисел - координаты вершин многоугольника в порядке обхода (по или против часовой стрелки). В третьей строке находятся M пар чисел - координаты центров ковров.

Выходные данные

Создайте 10 выходных файлов THEATER.S01, THEATER.S02, : , THEATER.S10 в вашем каталоге на дискете. Эти файлы должны содержать ответы для соответствующих входных файлов.

Каждый файл должен содержать два числа - целые части площадей S1 и S2. Вам не нужно сдавать программу! Баллы будут начисляться за файлы с правильными ответами.

Пример входных и выходных данных

THEATER.D00

THEATER.S00

0.5 2 4 1

1 1 5 1 5 4 1 4

3 4

3 6

ВверхВниз   Решение


а) Пусть  $ \alpha$,$ \beta$ и $ \gamma$ — произвольные углы, причем сумма любых двух из них меньше  180o. На сторонах треугольника ABC внешним образом построены треугольники  A1BC, AB1C и ABC1, имеющие при вершинах A, B и C углы  $ \alpha$,$ \beta$ и $ \gamma$. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
б) Докажите аналогичное утверждение для треугольников, построенных на сторонах треугольника ABC внутренним образом.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65575  (#1)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 86102  (#2)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9,10

Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

Прислать комментарий     Решение

Задача 65576  (#3)

Темы:   [ Задачи на движение ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

На циферблате правильно идущих часов барона Мюнхгаузена есть только часовая, минутная и секундная стрелки, а все цифры и деления стёрты. Барон утверждает, что может определять время по этим часам, поскольку, по его наблюдению, на них в течение дня (с 8.00 до 19.59) не повторяется два раза одно и то же расположение стрелок. Верно ли наблюдение барона? (Стрелки имеют различную длину, движутся равномерно.)

Прислать комментарий     Решение

Задача 65577  (#4)

Темы:   [ Наглядная геометрия ]
[ Симметрия помогает решить задачу ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 8,9,10

Клетчатый бумажный прямоугольник 10×12 согнули несколько раз по линиям клеток так, что получился квадратик 1×1. Сколько частей могло получиться после того, как этот квадратик разрезали по отрезку, соединяющему
  a) середины двух его противоположных сторон;
  б) середины двух его соседних сторон?

Прислать комментарий     Решение

Задача 86115  (#5)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольные параллелепипеды ]
Сложность: 4-
Классы: 8,9,10,11

Конструктор состоит из набора прямоугольных параллелепипедов. Все их можно поместить в одну коробку, также имеющую форму прямоугольного параллелепипеда. В бракованном наборе одно из измерений каждого параллелепипеда оказалось меньше стандартного. Всегда ли у коробки, в которую укладывается набор, тоже можно уменьшить одно из измерений (параллелепипеды укладываются в коробку так, что их рёбра параллельны рёбрам коробки)?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .