Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 35]
|
|
Сложность: 3+ Классы: 9,10
|
Дан треугольник
ABC и точка
O.
M1,
M2,
M3 — центры тяжести
треугольников
OAB,
OBC,
OCA соответственно. Доказать, что площадь
треугольника
M1M2M3 равна 1/9 площади
ABC.
Известно, что
Z1 + ... +
Zn = 0, где
Zk — комплексные числа. Доказать,
что среди этих чисел найдутся два таких, что разность их аргументов больше
или равна
120
o.
|
|
Сложность: 3+ Классы: 9,10
|
С центрами в вершинах прямоугольника построены четыре окружности с радиусами
r1,
r2,
r3,
r4, причём
r1 +
r3 =
r2 +
r4 <
d;
d — диагональ
прямоугольника. Проводятся две пары внешних касательных к окружностям 1, 3 и
2, 4. Доказать, что в четырёхугольник, образованный этими четырьмя прямыми,
можно вписать окружность.
|
|
Сложность: 3+ Классы: 10,11
|
Точки
A и
B движутся равномерно и с равными угловыми скоростями по
окружностям
O1 и
O2 соответственно (по часовой стрелке). Доказать, что
вершина
C правильного треугольника
ABC также движется равномерно по
некоторой окружности.
|
|
Сложность: 4- Классы: 8,9,10
|
Дан остроугольный треугольник
A0B0C0. Пусть точки
A1,
B1,
C1 — центры
квадратов, построенных на сторонах
B0C0,
C0A0,
A0B0. С треугольником
A1B1C1 делаем то же самое. Получаем треугольник
A2B2C2 и т.д.
Доказать, что
An + 1Bn + 1Cn + 1 пересекает
AnBnCn
ровно в 6 точках.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 35]