|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть ABC – остроугольный треугольник, C' и A' – произвольные точки на сторонах AB и BC соответственно, B' – середина стороны AC. |
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702]
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.
Треугольники ABC и ABD равны, причём точки C и D не совпадают. Докажите, что прямая CD перпендикулярна прямой AB.
Докажите, что для любого натурального n существует выпуклый многоугольник, имеющий ровно n осей симметрии.
Высоты треугольника ABC пересекаются в точке H. Докажите, что радиусы окружностей, описанных около треугольников ABC, AHB, BHC и AHC, равны между собой.
Страница: << 173 174 175 176 177 178 179 >> [Всего задач: 6702] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|