ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На отрезке MN построены подобные, одинаково ориентированные
треугольники AMN, NBM и MNC (см. рис.). Докажите, что выпуклый пятиугольник ABCDE с равными
сторонами, углы которого удовлетворяют неравенствам
Неравенство
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности. В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
Докажите, что 2n > (1 – x)n + (1 + x)n при целом n ≥ 2 и |x| < 1.
Для выпуклого четырёхугольника ABCD соблюдено условие:
AB + CD = BC + DA.
Докажите, что окружность, вписанная в
Решить систему уравнений: x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.
Два человека A и B должны попасть из пункта M в пункт N, расположенный в 15 км от M. Пешком они могут передвигаться со скоростью 6 км/ч. Кроме того, в их распоряжении есть велосипед, на котором можно ехать со скоростью 15 км/ч. A отправляется в путь пешком, а B едет на велосипеде до встречи с пешеходом C, идущим из N и M. Дальше B идёт пешком, а C едет на велосипеде до встречи с A и передаёт ему велосипед, на котором тот и приезжает в N. Когда должен выйти из N пешеход C, чтобы A и B прибыли в пункт N одновременно (если он идёт пешком с той же скоростью, что A и B)?
Найдите соотношение между
arcsin cos arcsin x и arccos sin arccos x.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке