Страница: 1 [Всего задач: 5]
Задача
98389
(#1)
|
|
Сложность: 3- Классы: 8,9,10
|
Барон Мюнхгаузен утверждает, что ему удалось составить некоторый прямоугольник из нескольких подобных между собой непрямоугольных треугольников. Можно ли ему верить? (Среди подобных треугольников могут быть и равные.)
Задача
98380
(#2)
|
|
Сложность: 3 Классы: 7,8,9,10
|
а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти
произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
|
|
Сложность: 3- Классы: 7,8,9
|
В какое наибольшее количество цветов можно раскрасить клетки шахматной доски 8×8 так, чтобы каждая клетка граничила по стороне хотя бы с двумя клетками того же цвета?
Задача
98392
(#4)
|
|
Сложность: 4- Классы: 10,11
|
Положительные числа A, B, C и D таковы, что система уравнений
x² + y² = A,
|x| + |y| = B
имеет m решений, а система уравнений
x² + y² + z² = C,
|x| + |y| + |z| = D
имеет n решений. Известно, что m > n > 1. Найдите m и n.
В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.
Страница: 1 [Всего задач: 5]